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Abstract

This paper discusses theoretical foundations of

quantitative image-based measurements for extracting and
reconstructing geometric, kinematic and dynamic

properties of observed objects. New results are obtained
by using a combination of methods in perspective

geometry, differential geometry, radiometry, kinematics
and dynamics. Specific topics include perspective

prqiection transformation, perspective developable conical
surface, perspective projection under surface constraint,

perspective invariants, the point correspondence problem,
motion fields of curves and surfaces, and motion equations

of image intensity. The methods given in this paper arc
useful for determining morphology and motion fields of
detormable bodies such as elastic bodies, viscoelastic

mediums and fluids.
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1. Introduction

Image-based measurement techniques play an
increasingly important role in virtually all natural sciences

and engineering disciplines since they can provide
tremendous information and knowledge about observed

objects in a global, non-contact way with high temporal
and spatial resolution. Specialists in photogrammetry,
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computer vision, and other scientific and engineering

disciplincs have developed various methods that are best
suitable to particular applications in their fields. In

particular, both photogrammetrists and computer vision
scientists have studied image-based techniques for many

years to obtain metric and geometric inlormation. The

approaches developed by photogrammetrists arc more
mature and quantitative, which are recently extended to

non-topographic applications [1]. By contrast, in order to
deal with more complicated vision problems relatcd to

artificial intelligence, computer scientists tend to adopt
morc versatile mathematical approaches in perspective

geometry, differential geometry and image algebra [2-5].
However, the approaches used by computer vision

scientists are of qualitative nature in many cases and

generally less accurate than those used in photogrammetry
in metric measurements. Because the objectives of

different disciplines are very different, there is a lack of
sufficient interaction among specialists in various technical

communities. Perhaps due to different notations, jargons
and methodologies in these communities, it is difficult to
transcend the different technical domains and see a unified

scope of various image techniques.
From a methodological standpoint, the approaches in

photogrammetry and computer vision should be integrated
into a universal theoretical framework. Furthermore,

unlike computer vision scientists who mainly study rigid
bodics, aerospace engineers and scientists often deal with

complex morphology and motion fields of deformable
bodies such as elastic bodies, viscoelastic mediums and

fluids. It is highly desirable to formulate universal
theoretical foundations lor quantitative image-based

measurements of morphology and motion fields of
deformable bodies. In this paper, we will focus on the

geometric, kinematic and radiometric aspects of image-
based measurements. First, we will provide a unified

treatment of the perspective projection transtbrmation
from the 3D object space to the 2D image plane and

illustrate geometric connections among different
formulations of the perspective proiection translormation.
Then, we will discusses some specific problems for

recovering geometry and motion, such as projective

developable conical surface, projection under surfacc
constraint, reconstruction of motion field on a surface and
motion field of a 3D curve, the correspondencc problem,

and projective invariants. This is an area tor combined

application of approaches in perspective geometry,
differential geometry, kinematics and dynamics. In the



radiometricaspect,we will discussthe fundamental
relationshipbetweentheimageintensityandradiancefrom
anobject.Basedon thisrelationandimposedphysical
constraints,themotionequations of image intensity will be

derived for typical physical processes such as moving

Lamertian surface, emitting passive scalar transport, and
transmitting passive scalar transport. These equations

provide a rational way for reconstructing the geometric
and kinematic properties of deformable bodies like fluids.

In general, the geometric, kinematic and radiometric

approaches are closely coupled.

2. Perspective Projection Transformation from 3D
Space to 2D Image

Image-based measurement techniques extract data
from 2D images and then map them into the 3D object

spacc. There is a perspective relationship between the 3D
coordinates in the object space and the corresponding 2D
coordinates in the image plane [I, 6-8]. Here, we discuss

several tbrmulations of the perspective projection
transformation. Although these formulations are
equivalent, one may be more convenient to use than others

for a specific problem. The fundamental geometric
problem in image-based measurements is to determine the

object space coordinates X = ( X i, X "-. X 3 )r given the

corresponding image (retinal) coordinates x = (x _,x -_)7-.

Figure I illustrates the camera imaging process. The lens

of the camera is modeled by a single point known as the
perspective center (or tile optical center), the location of

which in the object space is Xc=(X(,X:,X_) r.

Likewise, the orientation of the camera is characterized by
three Euler orientation angles. The orientation angles and
location of the perspective center are referred to as the

exterior orientation parameters. The object space point.
perspective center and image point lie along a straight line
for a "'perfect'" camera. This relationship is described by

the collinearity equations, the fundamental equations of
photogrammetry. On the other hand, the relationship

between the perspective center and the image coordinate
system is defined by the camera interior orientation

parameters, namely, the camera principal distance c and

the photogrammetric principal-point location

x t, = (x_,, y_ )r. The principal distance c, which equals

the camera local length for a camera focused at infinity, is

the perpendicular distance from the perspective center to
the image plane, whereas the photogrammetric principal-

point is where a perpendicular line from the perspective
center intersects the image plane. Due to the lens

distortion, however, perturbations to the imaging process
lead to departures from collinearity that can be represented

by the shifts 8x _ and 6x: of the image point from its

"'ideal" position on the image plane. The shifts _x _ and

ax e are modeled and characterized by a number of the

lens distortion parameters.

The image and object space coordinates of the points

are related by the collinearity condition in which the image
vector is aligned with the vector from the perspective
center to the object space point

-x,:+Sx: =2. M X:-X:

- c X _ - X !

(2.1)

where M = [m,j ] is the rotation matrix, )l is a scaling

factor. Algebraic manipulation of Eq. (2.1) yields the

well-known collinearity equations (with the distortion

terms 8x s and ax e) relating the point in the 3D object

space to the corresponding point on the image plane,
--1

m/( X - X_ ) X
x' -x_,+gx' =-c =-c--

--3
m3r( X - X_ ) X

--2 ' (2.2)
re,r( X - X_ ) X

X 2 --X_+t_X: =--c =--C._-- i-
m._7( X-X_ ) X

where the vectors m t = ( m_ ,m_, ,mj¢ )r and

m e = (m:_.me:,me. _ )r are the directional cosine vectors

along the x_-axis, xe-axis in the image plane, respectively.

The vector m_ =(m,j.m,:,m,, )r is normal to the image

plane, directing from the principal point to the optical

center on the optical axis. As shown in Fig. 1, the unit

orthogonal vectors m t , m 2 , and m_ constitute an object

space coordinate frame at the optical center X_ and

_- = (-_, ,_-:,_-3 )r are the projections of the object space

position vector X - X_ in this frame. The elements of the

rotation matrix m_ (i. j = 1. 2. 3) are functions of the Euler
orientation angles t co,¢._ ),

m. = cosO coslc, m_: = sinm sinO costc + costa sinlc,

m_, = - cos m sin ¢ cos i¢ + sin co sin Ic,

m 2e = -- sin 09sin 0 sin _ + cos 09cos/c,

m 2_ = cos COsin 0 sin IC+ sin COcos _C,

ms_ = sin O, m.,, =-sincocosO, m_

m:j = -cos 0 sin lc,

= COS(1) COS_).

(2.3)
The orientation angles (co.0.t¢) are essentially the pitch,

yaw, and roll angles of the camera in the established

coordinate system in the object space. The rotational

matrix M is an orthogonal matrix having the property of

M -t =M r or m[Cms =b'_,. The scaling factor

2=-c/m3r(X - X ) is a ratio between the principal
C

distance and the projected component of the object space

position vector X-X_ on the optical axis in -m_



direction.WhenanobjectspacepointX is on the focal

plane m 7j (X-X )=0, the scaling tactor becomes
C

infinite, i.e., 2 = _, which corresponds to the points at

infinity on the image (retinal) plane.

The terms ax; and ax 2 in Eq. (2.2) are the image

coordinate shifts induced by the lens distortion. The lens
distortion terms can be modeled by the sum of the radial

distortion and decentering distortion [9- I0]

a.r'=ax[ + ax,5 and ax e=a.r_ + a.r_, (2.4)

where, assuming that the optical axis of the lens is

perpendicular to the image plane, we have
1, ; )i.4;' r I )re + K,( x -x;, ,a.'h I = K ;( "_ --" ;'

a.r = K,(,,-:'-.q,)r"+ X:(.r:'-.q, J,"
ax5 = e,[ ,.2 + 2(x;,_xl ' )2] + 2¢( x;,_xl ' )( x2,_.r_, ),

a,r_ = _ / r 2 + 2( xe'-x_, )2 ] + 2P,( x"-x_, )( x 2 '-.r_ )

,.: =( x"-xl, )"+( .r:'-x_, ):. (2.5)

Here, K; and K2 are the radial distortion parameters, P; and

P2 arc the decentering distortion parameters• and .r _' and

x-" arc the undistorted coordinates in image. When the

lens distortion is small, the unknown undistorted

coordinates can be approximated by the known distorted

coordinates, i.e., x;'= x; and x:'= x 2. For large lens

distortion, an iterative procedure is employed to determine

the appropriate undistorted coordinates to improve the
accuracy of the estimate. The following iterative relations

are used: (x;')° = x; and ( x 2, )o= x 2,

( x _, )_+; =x; +ax; l( x ;' )k,( x2' )k ] and

( x 2, )k+; = x 2 +ax e [( x;, )k,( x 2, )* ] , where the

superscripted iteration index k is k--0, 1, 2..-.

The collincarity equations Eq. (2.2) can bc re-written

in the homogenous coordinates in the image plane

x h = (.rj,x: ,x: )r = (x I,.r2 ,1)r

Ax h =2MfX-X_) or Xh=2P(X--X:), (2.6)

where P=[pii]=A-IM and A=[a,j] is dcfined as

I "; + ax;

'1 0 -x;,

A= 0 1 -x_+ax 2 (2.7)

0 0 -c

The terse tensor form of Eq. (2.6) is

aiixil = 2m,/X j -Xf ), where the Einstein convention

for summation is used. The matrix-form and tensor-torm

of the collinearity equations are sometimes convenient for

mathematical manipulation. Another alternative form of
the collinearity equations in the homogenous coordinates is

Xh = /_Ph Xh' (2.8)

where X h =(X;,X2,X¢,I)r is the homogenous

coordinates in the object space, and Ph = A-tMh and

M h =(M -MX_ ) are 3x4 matrices. Although Eqs.

(2.6) and (2.8) arc formally written as a linear relation

between x h and X or X h, they are essentially non-

linear because not only the lens distortion is a non-linear
function of x, but also the scaling factor

2=-c/mJ(X-X ) is not a constant in general.
• C

Nevertheless, because the lens distortion is usually small,

its effect can be corrected by using an iterative scheme.

Hence, Eqs. (2.6) and (2.8) can be treated as a quasi-linear

system at each iteration. Without the lens distortion, the
collinearity equations describe the ideal perspective

projection. Eq. (2.8) is particularly suitable for utilizing
useful results of classical perspective geometry to

construct projective geometric invariants.
Furthermore, Eq. (2.2) can be re-written as a form

suitable to least-squares estimation for the object space

coordinates X,

W;; ( X-X_ )=0
(2.9)

W2r(X-X_ )=0

where W_ and W e are defined as

W_ =( x _ -.ri,+a.r _ )m3 +cm_
(2.10)

W, =( x 2 -x_,+ax 2 )ra, +cm 2

As shown in Fig. 2. the vector W_ is on the plane spanned

by the orthogonal unit vectors m_ and m,, while W 2 is

on a plane spanned by m e and m 3. Geometrically

speaking, W/( X-X_ )=O and W2r(X-X_ )=O

describe two planes normal to Wt and W e through the

optical center. Thus, Eq. (2.9) defines an intersection of

these two planes, which is a line through the optical center

X_. For a given image point x =(x;,x: )r Eq. (2.9) is

not sufficient to determine a point in the object space with

the three unknown coordinates X=(X;.Xe,X')r.

Hence, extra equations associated with additional cameras
and other geometrical constraints should be added for

seeking a unique least squares solution of X . In contrast

to Eq. (2.8), Eq. (2.9) does not include the scaling factor
/t.

The collinearity equations Eq. (2.2) contain the

camera parameters to be determined by geometric camera

calibration. The parameter sets (oo,O,_',X/,X,e,X;!),

(_,xv, ;,xT_ ), and (K;, K,,_ PI,P_)_ in Eq. (2.2) are the

exterior orientation, interior orientation, and lens distortion

parameters of a camera, respectively. Geometric camera
calibration is a key problem in quantitative image-based
measurements and a specific topic in both photogrammetry



andcomputervision. Hereweonlybrieflyaddressthis
issueand readerscan find the technicaldetailsof
geometriccameracalibrationfromreferences.In this
paper,wegenerallyassumethatthecameraiscalibrated
andacompletesetof theorientationparametersandlens
distortion parameters of the camera
(og,O,I¢,X,(,X,:,Xi_,c,x_,,x_,K,,K2,P_,P: ) is known.

Analytical camera calibration techniques utilize the
collinearity equations and distortion terms to determine

these camera parameters [6-8]. Since Eq. (2.2) is non-
linear, iterative methods of least squares estimation have

been used as a standard technique for the solution of the

collinearity equations in photogrammetry. However.
direct recovery of the interior orientation parameters could

be problematic and unstable since the normal-equation-
matrix of the least squares problem is nearly singular. The

singularity of the normal-equation-matrix mainly results
from strong correlation between the exterior and interior
orientation parameters. In order to reduce the correlation

between these parameters and enhance the determinability

of (c,xp,yp). Fraser 19, 1 I] suggested thc use of multiple

camera stations, varying image scales, different camera
roll angles and a well-distributed target field in three

dimensions. Nevertheless, the multiple-station, multiple-
image method Ibr camera calibration is not easy to use in
many engineering and scientific applications like wind

tunnel testing where optical access tbr cameras is limited
and the positions of cameras are fixed. AbdeI-Aziz and

Karara 1121 proposed a simple linear method for camera
calibration, Direct Linear Translbrmation (DLT).

Scientists in computer vision and robotics have developed
various camera calibration schemes to achieve a fast

calibration with an acceptable accuracy (a lower accuracy
for a photogrammetric application). Tsai's two-step
method [13] is representative in computer vision, which

uses a radial alignment constraint to obtain a linear least

squares solution tor a subset of the calibration parameters,
whereas the rest of the parameters including the radial

distortion parameter are estimated by an iterative scheme.
By circumventing the singularity problem. Liu et al. [141

developed a robust optimization method for single-image,
automatic camera calibration to determine the interior and

exterior orientation parameters and lens distortion

parameters plus the pixel spacing ratio.

3. Projective Developable Conical Surface Containing
3D Curve

In this section, we introduce the concept of proiective
developable conical surface and show how to reconstruct

this surface containing a 3D curve from a single image. In
principle, a 3D curve in the object space cannot bc

completely recovered from a single image since
information in one dimension is lost in the imaging

process. Nevertheless, using a calibrated camera, a
projective conical developable surface on which a 3D

curve lies can be reconstructed. When two calibrated

cameras are used. the 3D curve can be uniquely
determined as an intersection of two different projective
conical developable surfaces. Furthermore, a 3D surface

can be reconstructed as an envelope of a family of the
projective developable conical surfaces obtained from

images taken at different viewing angles. The motion field

of the 3D curve can be obtained from a time sequence of
the curve.

Generating Proiective Developable Conical Surface

Consider a 3D simple curve C in the object space, and
its proiection to the image plane and a plane P normal to

the optical axis (parallel to the image plane), as shown Fig.
3. The coilinearity equations Eq. (2.6) are written as

X- X c = 2-J-fi Xh, (3.1)

where -fi=p-t =[Pi/I=M-tA=MrA" When the

camera parameters and the scaling factor are constant and

the lens distortion is fixed, differentiating Eq. (3.1) yields

dX = 2 -I P._2 dr . (3.2)

where dX =( dX I,dX :.dX -_)r. dr =(dr z dr: )r . and

I- -PH PJ:

L:

A constraint imposed on Eq. (3.2) is mJdX=O,

indicating that Eq. (3.2) actually describes the projection
Cp of the 3D curve C on the plane P orthogonal to the

optical axis direction or m._. This constraint is equivalent

to the constancy condition of the scaling factor

2 =-c/m_T( X - X ) since the differential
C

dA = c m _r dX ��m J( X - X, )1: shows

m_rdX = 0 ¢:_ d2 = 0. In fact, the constraint

2=-c/m_rfX-X_ ) : const, defines the plane

orthogonal to the optical axis direction or m 3 . As shown

in Fig. 3, the projected curve Cp on the plane P can be

reconstructed from the image and then the developable
conical surface D containing the 3D curve C can bc
generated.

The arc length element of the projected curvc Cp on
the plane P is

dSc_ = I dX I= 2 -I I-fi._: t I ds, (3.3)

where t =dr/ds and ds =ldxl are the unit tangent vector

and arc length element of the image of the 3D curve C in

the image plane, respectively. Thus, the unit tangent

vector of the projected curve Cp on the plane P is

dX P._: t
Tc, - - -- (3.4)

" dS,- k I P_: t I



Note that the unit tangent vector To, ' is independent of the

scaling factor 2'. The curvature vector of the projected
curve Cp on the plane P can be obtained by differentiating

Eq. (3.4) with respect to the arc length Sc+'

dT¢,, _ 2 -- d t-P3,_t I
(p,:k-Tce --), (3.5)

Key - dScv [ P.¢2 t 12 ds

where k =dt/ds = d:x/ds 2 is the curvature vector of the

curve image in the image plane. The curvature vector k

can be expressed as k=_n, where Ic and n=k/Ikl

are the curvature and the unit normal vector of the curve

image in the image plane, respectively. Furthermore, we

prove

d I Pc: t l _ ( P._: k )T(-P32 t ) (3.6)

ds I P s: t I

Hence, Eq. (3.5) becomes

2' -- ( P_: n )r( P__2t ) ]
Kc,, =___ I2 [p_:n-Tc ' . (3.7)IP .¢2t ' t-P._: t I

The curvature of the projected curve Cp on the plane P is

_cp =Kcv'Nc,," where Nee =Kcr/IKc, ' I is the

principal normal vector of the projected curve Cp. Thus.

the ratio between the curvatures _'c,, on the plane P and

_" on the image plane is

K'c,__L= "2
r_ Ip._:tl 2 [P_2n-Tc" (-P_:n)r(P_:t)]'Nc''lPe--t l

(3.8)

Clearly, Eq. (3.8) indicates that ,vc, ' /t¢ is proportional to

the scaling factor 2,.

After the unit tangent vector To," is obtained from the

image, the projected curve Cp on the plane P is readily
reconstructed by

I S(pXc_, = Xcpo + , Top (Sop)dSc_ . (3.9)

The initial position Xo, . on the projected curve Cp, in the

object space is often chosen at the end point of the curve.

Eq. (3.1) gives Xce,, - X _ = 2,-J P xho , where

Xho =(X/,.X_,I) r is the homogenous coordinates of the

corresponding image point to Xcr .. Substituting Eqs.

(3.3) and (3.4) into Eq. (3.9) yields a ray vector directing

from the optical center X_ to a point Xc, , on the

projected curve Cp

-- .+. l'*_J --Xc_, -X_ =2,-I(Pxho P¢,_ tds). (3.10)
0

A family of the projective rays through the optical center

X c given by Eq. (3.10) generates a projective developable

conical surface D that contains the 3D curve C. The

tangent plane on the developable conical surface D is

given by
(X-X_)oNo(s)=O, (3.1 I)

where ND(s)=Tcp×(Xc, ,-X_)/ITcP×(Xc e-X_)l

is the unit normal vector to the tangent plane on the

developable surface, which is independent of the scaling
factor. Eq. (3.11) describes a single-parameter family of

the tangent planes where the parameter is the arc length s
of the curve in the image plane. The projective conical

developable surface, the envelope generated by the family
of the tangent planes, is given by a system of Eq. (3.11)

and Eq. (3.12)115]
( X- X_ ).dNo( s )/ds =O. (3.12)

Thus, the projective developable conical surface and

associated geometric quantities such as the curvature,

tangent vector and normal vector in the 3D object space
can be obtained by using measured image quantities given

the camera parameters.
Reconstructing 3D cuta,e and Surface

From a single image, we arc able to reconstruct the

proiectivc conical developable surface containing the 3D
curve C rather than the 3D curve itself. Nevertheless,
when two calibrated cameras are used, as shown in Fig. 4,

the 3D curve C can be uniquely determined by intersecting

the two projective developable conical surfaces associated
with the different cameras. Interestingly, the developable
conical surface intersection method for determining the 3D

curve only requires knowing the correspondence of one

distinguished point such as an end point of the curve.
Furthermore, the developable conical surfaces can be

used to reconstruct a 3D surface in the object space. As

shown in Fig. 5, the developable conical surface
containing the contour of the 3D surface can be
constructed. Here the contour is a set of points on the 3D

surface at which the surface normal is also the normal of

the developable conical surface. When the camera is
moved to a number of known positions through a
rotational and translational transformation (rigid-body

motion), a family of the developable conical surfaces can
be obtained. The 3D surface is generated as an envelope

of the family of the conical surfaces. Instead of moving
the camera, the 3D surface can be rotated around a fixed

axis such that a family of the conical surfaces can be

obtained using a camera at a fixed position and viewing

angle. From a computational viewpoint, this method may
not be the most efficient since the intersection and

envelope of the developable conical surfaces has to be
determined. However, this method is to great extent

immune from the ambiguous correspondence problem in

stereovision.

Recovering Motion Field o[ 3D Curve
Alter two or more 3D curves in the object space at

successive instants are reconstructed, we can estimate the

motion field U( X ) of the 3D curve that is defined as



dX
U( X )=-- (3.13)

dt

The curve is given by X = X[S(t),t], where t is time

and S( t ) is the arc length of the curve in the object space.

Measurements give the temporal and spatial difference

between two curves at two successive instants t¢ and t,

(the time interval At = t: -t_ is small)

As, X =XIS(t: ),t:l-X[S(t I ),t_]. (3.14)

Reconstruction of the motion tield of the 3D curve from

AstX is a non-trivial problem since the point

correspondence between two sequential images is not
known without using distinct targets on the curve

especially for an elastic curve experiencing large and
complicated deformation.

The motion field of the curve is constrained by the
underlying physical mechanisms behind the motion and

deformation of the curve. In general, reconstructing the
motion field is fornmlated as an optimization problem of
the functional

J[U( X )]=IIA._,X-U( X )AtlI---_ min (3.15)

subject to relevant physical and geometric constraints

G,[U(X)]=O, (i=1.2,...) (3.16)

and the suitable boundary conditions. Without the

sufficient constraints, the solution to the optimization

problem may not be unique. Also, the imposed physical
constraints serve as a bridge connecting image-based
measurements with the physical quantities in a specific
problem being studied.

In the simplest case in which the curve is rigid, the
rigid-body motion field is expresscd as

U( X )=U o + _,x( X-X o ), (3.17)

where U o and .(2o are the constant translation velocity

and angular velocity, respectively, and X o is the rotational

center of the curve. Because U o and .(2, together contain

only six unknown constants, it is easier to solve the

optimization problem. A slightly complicated case is that
the curve is stretched in three fixed directions in addition
to the constant translation and rotation. In this case, three

stretching constants are added, and thus the total number

of the unknowns in the optimization problem is nine.
Next, we consider a highly deformable material line

convected in an incompressible and irrotational flow. In
this case, the physical constraints arc the solenoidal and
irrotational conditions [ 16]

V.U( X )=O and VxU( X )=O. (3.18)

A vortex-filament in an incompressible and irrotational

flow is an interesting example since the filament driven by
not only mean flow, but also self induction is no longer

passive and the motion field is directly related to the
geometric features of the filament. In this case, the

induced motion velocity of the filament is proportional to

the curvature K of the filament along the binormal
direction vector B [17]

U( X )o¢ _B. (3.19)

Overall, the physical constraints tbr a specific application
are necessary for recovering the correct motion field and

associated physical properties of the 3D curve.

4. Perspective Projection under Surface Constraint

In general, mapping between a point in the 3D object
space and the corresponding image point is not one-to-one.

Nevertheless, as shown in Fig. 6, under a given surface
constraint, a point on the surface has the one-to-one
correspondence to the image point. In this section, wc

discuss the geometric relationship between the surface in

the object space and the image plane. This topic is closcly
related to some applications in experimental fluid
mechanics and aerodynamics such as reconstruction of

complex Ilow topology from images of surface oil
visualization and laser-sheet-induced fluorescence

visualization. Consider a surface in the object space given
by

X _ = F( X I, X2 ). (4.1)

When Eq. (4.1) is imposed on Eq. (2.9) as a surface

constraint, the perspective projection transformation Eq.
(2.9) is reduced to

(w H w:_ -- wl._wel )X t + (w_: w:_ - wl._w,_,_)X "

= w,._ W/r X, - n'l._ W 2z X,

w/iX_ +wl:X -" +wI._F(XI.X: ) = W/rX . (4.2)

where wj ( i = 1,2 and j = 1,2,3 ) arc the elements of the

vectors W t =( w_.wj:,wj, )7 and W 2=(w:j,w::,w:_)r.

For the given surface equation X _ = F( X _, X'- ) and the

known camera parameters, the coordinates (X _, X: )r

can bc obtained from the image coordinates x =(x _, x: )7

by numerically solving Eq. (4.2). Thus. the coordinates

X=(X_,X-',X -')7- in the object space can be

symbolically expressed as a function of the image

coordinates x = (x j , x-' )7, that is,

X =fs(x). (4.3)

In fact, Eq. (4.3) is a parametric representation of the

surface using the imagc coordinatcs x = (x _, x-' )r as thc

parameters. Generally, the function fs(x) cannot be

written as a closed-lorm solution except in some special
cases such as a plane and a cylindrical surface.

Differentiating Eq. (2.9), we have

dW/X + W/dX = dW/X_

dW 2 r X + W 27dX = dW 2r X, . (4.4)

When the lens distortion is fixed, dWtT= dx_ms r and

dW2 r = dx2m_ r hold. Then, substitution of



dX ._=(OF/OX I )dX 1 +(OF/OX 2 )dX 2 into Eq. (4.4t

yields

dX '-

where

o=(Wll +w_._ 3F/OXI wI, +wI_OF/OX 2
_w,i + w_,._3F/OX I w,_:+ w2_3F/OX: (4.6)

Furthermore, the differential dX J can be expressed as a

I _ )Tfunction of the image coordinatcs dx = (dx ,dr"

dX -_=(dF/dx I )dx I +(dF/dr'- )dx:, (4.7)

where

dF OF OX J OF OX :
- + . ( ct = 1,2 ) (4.8)

dx a OX I Ox" OX : Ox'_

Combining Eqs. (4.5) and (4.?), we have

r )Qdx (4.9)dX = m., ( X_ - f s

where

Q-I _. (4.10)= dF dF )/m_r(X¢-fs)
-Q ( dt.i ' dx 2 .

Eq. (4.9) provides a fundamental relation between the
differentials dX on the surface and dr on the image

plane. The matrix Q is a lunction of the image

coordinates, the camera parameters and the geometric

properties of the given surface.
On the other hand, we notice

dX =(OX/_x I )dx j +(OX/Ox 2 ) dx2" (4.11)

From Eqs. (4.9) and (4.11), we obtain the following

equality

(OX/OxI.OX/Ox "-) =mjr(x_ -fs )Q" (4.12)

The element dS of the arc length of a curve on the surface

can be determined from Eqs. (4.11) and (4.12) from the

image coordinates. We know

dS: = IdX I = g,,l_ dr"d_ "_ , (4.13)

where
OX OX

g_ = Ox,------7.Ox_ ( c_, fl = 1,2 ) (4.14)

is the so-called metric tensor in classical differential

geometry [I 81. The summation convention is used in Eqs.
(4.13) and (4.14). The quadratic differential form Eq.

(4.13) is the first fundamental form of the surface in which

the image coordinates are the parametric variables. In the

case of the perspective projection transformation, gaff

may be properly named as the perspective metric tensor
that is a function of the image coordinates, the camera

parameters, and the properties of the given surface.
The first fundamental form Eq. (4.13) allows us to

measure the basic geometric quantities on the surface in

the 3D object space from the image quantities. Consider a

curve on the image plane given by a parametric form

x(t)=(xJ(t),x:(t)) T and the corresponding 3D curve on

the surface X(t)=X(x(t))=fs(x(t)), where t is a

parameter (e.g. time). The length of an arc bounded the

points corresponding to the parametric values t = t,, and

t=t I is

["S= [g,_/3(dx"/dt)(dx_/dt)] _/2dt. (4.15)
ql h

The angle of two 3D curves at the intersecting point on the
surface can be calculated based on the image quantities.

Consider two image curves x(t)=(x_(t),x2(t)) r and

x( t) = (xJ+(t), x"+( t)) r • The tangential vectors of the two

3D curves on the surface are

dX (.r J (t ), x: (t ))/dt = OX/&r _ dx" / dt and

dX(x_*(t),x-'*(t))/dt = OX/Ox _+ d__+ / dt. Thus, the angle

y of intersection is

g _/j(dr"/dt)(dr/_+/dt)

cos 7 = _]g _/_(dr _,/dt )(dx, /dt )_/g ,tfl dx,,+ /dt )(dx /_. /dt )

(4.16)

The area of a domain H on the surface can be expressed in

the image coordinates

A(H) = [[,_-ff dx Idx:, (4.17)

U

where U is the domain in the image (x_,x :) plane

corresponding to the domain H on the surface in the object

space and g is the determinant g =1 ga/J I.

Example I: Plane
The plane constraint is a simple, but very useful case

in which the vector function fs(x ), the matrices Q and

can be explicitly expressed as a function of the known

camera parameters and the measured image coordinates.
Many aerodynamic flow structures are observed on a plane
or a near-planar surface. Planar laser sheet Iqow
visualization is just a typical case of the plane constraint.

In addition, a polyhedron consists of a number of the

planar faces. Consider a plane in the object space

X _ =aiX I+a,x:+a_. (4.18)

This plane is defined by the vector a =(a I,az,a_)r

related to the normal vector of the plane. In this case. the

matrix Q in Eq. (4.6) is

Q=I w''+w'-_a' w'-'+w'-_a" )-. (4.19)1,1'21 + W2d a l w22 + W23 a2

The function fs(X) in Eq. (4.3) has a closed-form

solution



where

Q-s! /

//Q,,,)ja T

(4.20)

( T

i= Ws Xc - Irr_a_ (4.21 )
T

W 2 X c - w:j ax

Now the matrix Q in Eq. (4.10)is

O-'
= (4.22)

( aj. a_, )Q-S

Example 2." Cylindrical Surface

A cylindrical surface is another case where fs (x), Q

and Q can be cxplicitly expressed. For the sake of

convenience, a transformation from the Cartesian

coordinate system to the cylindrical coordinate system is
used, i.e..

X=( X_,X".x_ )r=(pcos_o, psinq),z) T, (4.23)

where p is the radial coordinate, (p is the polar angle, and

Z is the axial coordinate. The differential dX is

( ,'os_ - p sin _ Oy dp ]

dX =lsin _ pcos_ 0 Ida1. (4.24)

t 0 0 S X<I: )

For a cylindrical surface constraint P = PC = CO#1SI.,

solving Eq. (2.9) lot ¢,0 and z, we have fs(x) as a

function of the image coordinates and camera parameters

f s ( x ) = ( p,, cos _0,p, sin q), z )r , (4.25)

where

b/,, +xlt, +b: - b;b;
COS _ =-

I_f + b7

+_4t,7t, +b/ - t,,<
sin _o=

" = w_(( wnp,, cos_+ %z p,, sin _-W, rX, ),

bs = Po( wHwex - ll':s%._ ),

b, = p ( %_. W_v - w_,_,u'/._ ).
z T T

b_=u' vl_l X_-%+W, X,.

There are two solutions for fs(x ), which are

corresponding to two intersecting points between a

perspective ray and the cylinder. For a non-transparent
solid surface, a camera only sees one intersecting point at

thc surface lacing the camera and hence fs(X ) is one-to-

one. The differentials in the cylindrical coordinate system
are related to the image coordinate differentials by the
|ollowing relation

d( (0, z) r = m iT( X c - f s )Q-J dr , (4.26)

where

Q (w,2P,,c°sq_-ws,p,,sinq) ws3 1
= . (4.27)

( %:p,, cosec- I%p,, sin _o w2_

Another differential is dp = 0. Note that the expressions

of fs(X), Q and Q lbr a spherical surface can be also

analytically derived, but they are so tedious that we do not

present them here.

5. Perspective Projection of Motion Field Constrained
on Surface

After discussing the geometric relationship between a
surface in the object space and the image planc, we study
kinematics under the surface constraint, that is, the

perspective projection of a motion field on a surface.
Consider a dynamical system

dX
i=U( X ), (5.1)
dt

where U( X ) = ( U s. U e , U +)r is a motion field in the 3D

object space and t is time. A surface constraint imposed
on the motion field Eq. (5.1) is

X 3 = F( XI.X 2 ). (5.2)

Under this surface constraint, U( X ) should be parallel to

the surface, which obeys the orthogonality condition

N,. .U( X )=O. (5.3)

where N =(3F/OXS,OF/aXe,-I) r is the normal

vector of the surface. Under the surface constraint Eq.
(5.2), Eq. (5. I ) is effectively reduced to a 2D system

X 2 U, IX_ X: FfXS.X2)]

In fact, Eq. (5.4) describes an orthographic projection of

the motion field Eq. (5. I ) onto the plane ( X s, X : ). From

Eq. (4.5), the dynamical system in the image plane, which
is corresponding to Eq. (5.4). is

u=--_t( x-' m.,r(X,-fs) U:lfs (x)]
(5.5)

o

We call u =dr/dt =d/dt(xS,x: )r the optic flow in the

image plane. The oplic lqow, a term first used in computer

vision, is defined as the velocity field in the image plane
that translorms one image into the next image in a

sequence. If Eq. (4.2) gives a one-to-one topological

mapping (homeomorphism): fx s, x _ ) _ (X _, X : ), the

topological structure of the dynamical system Eq. (5.5) in

the image plane is equivalent to that of Eq. (5.4) on the
surface in the object space when Q has the lull rank of 2

and m3r(x< -fs ) is not zero. Figure 6 illustrates this

point. The problem is to recover two components of the

motion field (U_. U 2 )r using Eq. (5.5) from the measured



opticflow u = dx/dt, while the third component U¢ is

readily obtained from the orthogonal condition Eq. (5.3).
In the above analysis, we do not specify the motion

field U( X ), which could be a limiting viscous flow field.

an oil-film motion field driven by skin friction, or a

particle motion field driven by a potential force (e.g.
gravity and electromagnetic force). The physical

constraints on U(X), which are different in different

cases, are necessary to reduce the number of unknowns.

For instance, an incompressible flow must obey the

continuity equation
V.U(X )=O, (5.6)

where V=(O/DX_.D/0X2,0/DX _)r is the Laplace

operator. Differentiating Eq. (5.3) with respect to X-', we
have

OUt OF OU I ?IF _U,
- + (5.7)

OX ._ OX 1 OX -_ OX 2 bX -¢

Substitution of Eq. (5.7) into Eq. (5.6) yields a constraint

on (U_. U 2 )r for an incompressible flow field.

0 OF 0 U_ + U: =0.
-_7 + Ox ' ax .+ _ ax "-ax.+

(5.8)

In general, it Js more difficult to directly obtain a

global solution of Eq. (5.5) for the motion tield

(Uj, U 2 )-i. Instead, we can seek a localized solution of

Eq. (5.5) in a sufficiently small area. In a neighborhood of

a point X o , the motion field ( U_, U 2 )r can be expanded

as a linear function of X

U/X)=e,,+(eil,ei:,e,._)(X-Xo), (i=1,2) (5.9)

where e,,, = U d X o ) are the local velocity components

and eij=OU,(Xo)/3XJ (j=1,2,3) are the local

deformation components. Hence, the localized form of Eq.

(5.5) is written as

,l(x' 1 0
Du =-_t _x: m.,r ( X _ - f s ) . (5.10)

( elo+(e,, et, et_)[fs(x)-fs(xo)] I=0
× .....

(e,.,, )[ fs ( x )- fs ( )] )+( eel, e22, e2¢ x o

The unknowns e,, and e 0, can be determined by

minimizing the norm IIDu II, i.e.,

II Ou II --->rain. (5.1 I)

At the final stage, the global motion field on the surface is
reconstructed from the local motion fields.

In an incompressible flow, the localized constraint Eq.

(5.8) is
OF OF

ell+el_7+e22+e23-_-_. =0. (5.12)

Furthermore, for the irrotational motion field on a solid

surface where the vorticity vanishes, i.e.,

m = V × U( X ) = 0, three constraints are

c32F OF +U 02F OF
UI ()XIOX 2 i_ej2_ _ : OX20X 2 +e22 0-_-e2.¢ =0,

U I _2 F OF _2 F OF
_X/OX / +ell__+U2 OX2_)X / _-e21 _X----72 -e.u =0,

e21 -el2 =0. (5.13)

Hence, for an incompressible, irrotational motion field,

eight unknowns in Eq. (5.10) are reduced to four
unknowns alter these constraints are imposed. At the

critical points, the velocity vanishes, i.e.,

e,, = U/X o ) = 0. The local topological structures of the

motion field at the critical points are determined by the

deformation coefficients % [19].

The above method tbr calculating the local motion

field is applicable to both discrete random particle patterns

(e.g. particle image velocimetry (PIV) patterns) and
continuous passive scalar patterns (e.g. laser-sheet-induced

fluorescence patterns in fluids). When discrete particle

patterns are so coarse that an individual particle can be

tracked, the local optic flow u = dx/dt is the velocity of

the particle in the image plane [20-211. For dense discrete

particle patterns, the local optic flow u = dx/dt can be
obtained using PIV method to seek the maximum
correlation between two particle patterns obtained at two
consecutive instants. However, for continuous passive

scalar patterns, recovering the local optic flow u = dx/dt
is non-trivial since we have to consider the perspective

prqiection of the transport equations of passive scalar
through a specific imaging process. Generally speaking,

the perspective projection of physical processes will lead
to motion equations of image intensity. The optic flow

u = dx/dt is determined by solving the motion equation of

image intensity for a specific physical process given the
suitable boundary conditions and constraints. Detailed

discussion on motion equations of image intensity will be

given in Section 12.

6. The Correspondence Problem
In Sections 4 and 5, three unknown coordinates in the

object space are reduced to two when the surface
constraint is imposed. Thus, the correspondence between
the constrained surface and the image plane is one-to-one.

In order to determine three unknown coordinates from

multiple views without any a priori constraint, however,
we need to know the point correspondence between two or
more images for the same physical point in the object

space. This is the so-called point correspondence problem.
one of the fundamental problems in 3D vision. Note that

another correspondence problem is point correspondence
in a time sequence of images. Here we focus on the



stereoscopiccorrespondenceof imagesratherthanthe
temporalcorrespondence.

Longuct-Higgins1221gavea relationbetweenthe
correspondingpointsin two images. Considertwo
camerasin whichthe unit vectors(m,_,_,m2,,,m._,,))
constitutea local right-handcoordinatesystemwhose
originis locatedat theperspectivecenterXct,), where

n = 1,2 is the index denoting the cameras 1 and 2. The

X 2 X _ )_three-dimensional coordinates X,, =(X/,). _,,. (,,)

in the coordinate flames (mtt,), me(n j, m._,)) are related by

a tensor-form of the translation and rotation
transformations

X,'_, = R,_a( X/',,-Tf ). (6.1)

where R = [ R,,/_ ] and T = [ T/s ] are the rotation matrix

and translation vector, respectively. If the two cameras

have the same principal distance and pixel spacing ratio.

R and T, can be obtained by translating the origins X,,,)

and rotating the vectors (mt,,),m2,,) ,mj+,j ) (n = 1.2 ) to

match the two coordinates frames. Here R and T, are

generally treated as the unknown matrix and vector.

A ncw matrix Q is given by

Q = RS or S,/_ = R_,_,S_,/_, (6.2)

where S is the skew-symmetric matrix

o 7"," -r,: )
S =- -T/ 0 T/ . (6.3)

T: -T,' 0

Eq. (6.3) is written as a tensor notation

S _I_ = e ,/_T," . (6.4)

where the permutation index e_,fl_, = I, or - l, or O if

(/t,fl.cr) is an even. or _x:ld permutation of (1,2,3), or

otherwise. From Eqs. (6.1)-(6.4). we know

_ _. , TOrY/:;X 12,Q,vJ x_ = R,_ ( X, I ) - T _")R_,. c_,fl_ ., .. i / )
(6.5)

=_x/',, - T/' )e.,_,.T,."X/,, = o

since R is orthogonal ( R,w Ruff = 8,_ ) and e_/_,, is anti-

symmetric in every pair of its subscripts. Note that

X r., = ( X /,, ,, X ,-"_,X /,, , )r are the coordinates in the local

frame (mn._,mer.).mst.)) whose origin is located at the

perspective center. Thus. the coilinearity equations Eq.
(2.2) can be re-written as a simpler form. In the local

coordinate flames (rn_.,,met.j,mj_.)). without the lens

distortion, the homogenous image coordinates

r (" r_ " c )r are related io the object space1. ,,,,,, I =(. ,,,_.x;,,,.-

coordinates X _' by

xj_,,=-cX[_,,/X/,,,. (n=l.2.ct=l.2.3) (6.6)

The image coordinates x_,_ are relative to the principal

point in these local frames rather than the geometrical

._ 3 {.. 2center of the image. Dividing Eq. (6.6) by X¢_X,2 , /

yields the Longuet-Higgins equation for the image point
correspondence

.el .fl

.U,_2_Q,xfl -_ = 0 . (6.7)

Often, Q = [Q,_ ] is called the fundamental matrix that is

related to the camera exterior orientation parameters.
Given a number of the point correspondences between the

two images (more than eight), the elements Q,_/_ can be

determined by solving the following algebraic equations
using a least-squares method

a ./1
(X_,c-,XhU_)i Qo¢ =0. (i = 1.2.... ) (6.8)

Longuet-Higgins' original derivation of Eq. (6.7) is
purely algebraic without giving a geometrical

interpretation. In fact, the geometrical meaning of Eq.
(6.7) is related to the epipolar lines in the images [2-3].

Given a point (x[;,,x_;)) in the image 1, its epipolar line

in the image 2 is a projection of the line connecting the

object space point and the image point through the optical
center in the camera I onto the image 2. The cpipolar line
in the image 2 is described by

_"_ =0, (6.9)" h(2) P(r¢ I

/I
where p_,_ =Q,_/_ %,,, are the coefficients of the epipolar

line. Thus, the matrix Q maps the points in the image ! to

the epipolar lines in the image 2. In the same way, Eq.

(6.7) also gives an epipolar line in the image 1 tot a given
point in the image 2. Hence, Eq. (6.7) serves as the
epipolar constraint to reduce the number of unknowns in

establishing the point correspondence. It is easily shown

that when the lens distortion exists, the generalized
epipolar constraint is

-_,t2, + "_,t2_ _._,(_ )=0. (6.10)

The lens distortion terms are
t "

/_x '_,,,_]=(6x,,,,,6x;,,_,O) r . Since the lens distortion

terms in Eqs. (2.4) and (2.5) are non-linear, an epipolar
line is a curve rather than a straight line. More point

correspondences are required to solve Eq. (6.10) since
there are additional unknowns associated with the lens
distortion.

The unknown fundamental matrix in the epipolar
constraint is determined by using a number of point
correspondences. Nevertheless, lor two calibrated

cameras, the image point correspondence can be directly
established from the collinearity equations. The
collinearity equations Eq. (2.9) for two cameras are written
as

W_,)7( X - X c_,_) =0
(n = 1.2 ) (6.1 I)

T

W2_,, ( X - X_,, ) = 0

I0



Re-combination of Eq. (6.11) yields two sets of linear

equations for X

W I.... X =Bloom (6.12)

and

W2comX : B2com . (6.13)

where the composite matrices and vectors are

W l ¢o_

B I¢om :

Wmf I
= ]W2(I) T , W2com =

1

W.2f

Wm_ Xca)
r

W2al X c(t_ ,

r

IWI(I)T I

W2(I) T ,

W2[2) T

"Wm/ Xctl_ I

B2co. = Wztl;T x ctl) ]"

W2¢2)TXc_2_)

(6.14)

Eliminating X from Eqs. (6.12) and (6.13). we have a

relation between the image coordinates (x/,..V'/_) in the

image 1 and (&l._ .r_ ) in the image 2

I .2 . I _ ) = Wlco m -IG(x_I , ,x,,, xi: _,x_:_ W2comB 2 .... - B I..... = 0

(6.15)

For a point (x/t,.x,: . ) in the image I. the corresponding

epipolar line in the image 2 is given by

IIG(x//, : " ' :,x._, .r(:_.x<:, ) II= 0. (6.16)

The Longuet-Higgins equation indicates that a point in

the image I corresponds to the epipolar line on the image 2
and vice versa. Therefore, the point correspondence is not

uniquely established between a pair of images since givcn
/ 2

an image point (x,,.x,,), there is only one equation lbr

two unknowns (x/:,.x_). In order to establish the point

correspondence among images, we need at least four
cameras (or four images). For four cameras or images, the

Longuet-Higgins equations are

r ,_ o _ =0 (i = 1,2,3,4 j = 1,2,3,4) (6.17)
" h(i) _o'[3( i-j ; Xtl(j) "

If the fundamental matrices Qc,p(,-j_ are determined by

calibration, for a given point (x/I _,x(2/)) in the image l, we

have a system of six algebraic equations for six unknowns

-lf-(2),-_(2),X¢3), .

r/_ =0x '_ o x_,_, =0 "_ Q_a,l--, . h,._,h(l) _ff[]( I-2 ) • _hfl) _ "

.Xh(2i " : 0 . .Xil¢I ) Qa/J( I-4 t " hi4)

-" x/j x" x_4 ) = 0 (6.18)x_,_,._Q_ :-4, h_4_= O. h_._,Q=a_3-4 _

When the four cameras are suitably positioned. Eq. (6.18)

is not singular and the solution of Eq. (6.18) for

(x,;,.x_l,.x_,.x__,,.x/,,.x_,) can be obtained using an

iterative method. In general, there are multiple solutions

since three equations in Eq. (6.18) are quadratic. The
correct solution has to be selected based on additional

criteria. More than four cameras can be used to increase

the redundancy for least square estimation.

7. Composite Image Space and Object Space

Eq. (6.12) gives a non-linear relation between the

object space coordinates and X and the composite image
, .i )r As shown in Fig. 7.coordinates x .... =(x/,,xfi,,x,:, .

the local coordinate frame (mm_,mem,m_a)) at the

perspective center X,t _ on the image 1 can serve as a

frame tbr the composite image space in which

.2 1 )Txc,,_ =(x/i,.._,,.x_: , are the coordinates along the unit

vectors (mm_,mm_.m._ m). Note that the coordinate x_

of the corresponding point in the image 2 is artificially

assigned to the coordinate value in the axis mj,) in the

composite image space. Mapping between the composite

image space and the object space is one-to-one.
Differcntiating Eq. (6.12). we have

W t .... dX +dW_o, .X = dB_ .... . (7.1)

Substitution of Eqs. (2.10). (6.12) and (6.14) into Eq. (7. I)

yields a basic differential relation between the composite
image space and object space (see Fig. 7)

= )dx,,,,,. (7.2)dX H(x .... )dx .... or dX _ =H,a(x,,,, /_

where

(mjetf (Wl-e_,mBt .... - Xc, l, ) 0 O)

H(x .... )=Wt;t,,mlO m.,,,f (W,-/,,,,B, .... -X,t t ) 0 I

I 0 0 m.lrz)T( Wlclm B_ .... - X_2_ ) )
(7.3)

Consider a 3D curve in the object space. The arc

length dS of the curve in the object space is expressed in

the composite image coordinates, i.e.

dS 2 = dX " dX _ = J ,,/_dL_,,,,,dx_,,,, . (7.4)

where J,, =H_,_H,_. Introducing the arc length

ds=(dx_,,,dxj_,,, )1/: in the composite image space, we

obtain a relation between dS and ds

dS = L( x,,,, )ds. (7.5)

The length scale factor L(x_o,, ) is

Id x .... )=( J,/_t,_,,, t,(_,,,,)1/:. (7.6)

where t_,,,, = dx_,,,,/ds is the unit tangent vector t_,,m of

the corresponding curve in the compositc image space.
Using Eq. (7.5), we are able to express the unit tangent
vector T of the curve in the object space in the composite

image space coordinates and tangent vector, i.e.,

T '_ = dX "/dS = L-_H,/_ t_,,,,. (7.7)

The principal normal vector K of the curve in the

object space is

I1



v_ t/t,, + L-tH,ak(_,,,

(7.8)

where k",,,,, =dt_,,/ds=d2t ",,,,,,,,/ds: is the principal

normal vector of the corresponding curve in the composite

image space. In the derivation of Eq. (7.8), the relation

d/ds = t_.,,,O/O.r[',,,, is used. The curvature of the curve

in the object space is

tC,,i,i = (K" K" )1/: . (7.9)

Eqs. (7.8) and (7.9) indicate that the curvature is not an

invariant under the perspective projection translormation,

which depends on not only k,'_,,,,, but also t_,,,, and the

camera parameters. The unit principal normal vector N is
obtained by normalizing K

N = tc_iK and N _ = t¢_K '_. (7.10)

The unit binormal vector B of the curve in the object space
is

B=T×N or B _ =c_TaN _'. (7.11)

Thus, the torsion of the curve in the object space is

r,_,j =-N"dB"/dS
(7.12)

-- IC I k._zl-I /-- ,,_,i'" _ e,B,, NaN_ +T/_ t,_,,,,_N" /_x_,,,, )"

In this stage, the geometric structures of the 3D curve such

as the tangent, curvature and torsion are expressed as a
function of the composite image space coordinates. In
general, they are not differential invariants under the

perspective projection transtbrmation. In many
applications, however, these geometric quantities are very

useful since they are directly related to the physical
properties associated with the curve. The useful physical

properties can be extracted from them. For example, the
motion of an isolated vortex filament (a good model for a
tornado) is mainly determined by thc curvature and torsion
of the filament [171.

From Eq. (7.2). we can relate the motion field

U,(X)=dX"/dt in the object space with the motion

field u ,( x .... ) = d__,,, /dt in thc composite image space

U,_( X )= H,_( x ..... )u_. (7.13)

The motion field U,,(X) can be decomposed into two

components

U,fl X )=dX_(Sft).t)/dt=_X_/-Ot+T_dS/dt. (7.14)

The first term OX"/Ot is the apparent velocity and the

second is the delormation velocity along the curve.

Similarly, u,_(x_o,, ) has two components

u,( x ,,,, ) = dx,",,,,,(s(t),t)/dt = _x[_,,,,/Ot + t,_,,,,ds/ dt . (7.15)

If the point correspondence of the curve at two successive

instants is not known, Eq. (7.13) cannot be directly utilized

to calculate the motion field U,,(X) tbrm image

mcasurements. Thc deformation ds / dt in thc composite

image space cannot be determined from images without
using any additional physical constraint. Thus. we havc to

look lot a global method for recovering the motion field
that is brietly discussed in Section 3.

8. Perspective Invariants of 3D Curve

Construction of perspective algebraic and differential
invariants for a 3D curve is difficult because the
perspective projection transformation is non-linear.

However, it is possible to construct semi-differential

invariants in a special case of stereo image pair [23]. The

perspective invariants are useful since they can directly
give certain geometric features of the curve from non-

calibrated images. We use the perspectivc projection
transformation for a pair of images

xh.J = 2_i_ P_i_ Xh" ( i = 1,2 ) (8. l)

where Xh_o=(X/i,,X,_,.I) T is the homogenous image

coordinates in a pair of images ( i = 1,2 ),

X h = ( X _. X 2, X _, 1 )7 is the homogenous coordinates in

the object space, and P_, = [g,,, .... I ( n = 1,2.3,

m = 1,2,3.4 ) are a 3x4 matrix that only depends on the

camera orientation parameters (see Section 2). In general.

/ rthe scaling factors 2_i) =-q, rn3, _ (X-X_,_) for the

two images are not the samc. which are related to the

camera parameters and the position of a point in the object
space. Here we consider a special but useful case in which

the scaling factors in two images are equal, i.e.,

&l, = 2,_,_ =2. (8.2)

The condition Eq. (8.2) implies

, m Tql,=q:), m3m =m3m ._m (X_e_-Xcm)=O. (8.3)

Eq. (8.3) indicates that the two images have a relative shift

on the same plane normal to the vector m._m = m3m. This

means that two cameras are placed side by side and their
optical axes are in parallel. This coplanar condition allows

us to combine the collinearity equations Eq. (8.1) for the
two images, which makes construction of perspective
invariants possible.

A relationship between the composite image space
and the object space for a 3D curve is written as in the
homogeneous coordinates

xn_o,,( s( S )) = 2(S )Ph .... Xh, (8.4)
-- 1 .2 .I

where x n.... - (x,, ,._m.._:), 1 )r is the composite

homogeneous coordinates in the imagc space.

X h = ( X _, X 2. X _, 1 )r is the homogenous coordinates in

the object space, and Pn_o,, is a composite matrix
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.... = P,,<,,._, P,,<,,:_. P,,,,c.< P,,,,,2_ (8.5)

The arc lengths s and S ot the curves in Et (8.4) are used

as a parameter of the curve in the composite image space

.1 .2 ./ . •(._o,,.Ll,,x_2>) and the obiect space ( XS.X : X _ )

respectively. The ['unction s = s( S ) is one-to-one.

Brill et al. 123] has constructed projective invariants

by differentiating Eq. (8.4) repeatedly with respect with S,

arranging the results in matrix equations for several points
on the curve, evaluating the determinants of the matrix

equations, and then eliminating all the factors related to the

imaging parameters. At first, following the method
developed by Brill et al. [23], we consider a number of the
basic geometric structures• The curvatures in the

composite image space and the object space are [ 18]

#%, =15/ .... 1=12 .... x37,.o_ I and x',_j =IXI=IXx.{'I,

(8.6)

where k ,.o_ = dx _om/ds, J?.... = d e X<om/ ds : ,

X=dX/dS, and )_=d2X/dS 2 are the derivatives

with respect to the arc length. The torsions in the

composite image space and the object space are,

respectively.

ri,. = I-iw.,. Jtco,. ;r".... ] / ].i?.... 12
(8.7)

= - IJ:n.,m J?n.... x'h .... I / IJ?.... I2 "

and

robj = i ,_ J( )7 i/i J_ i-"= -i X,, ._'.._ i/i J( i:. (8.8)

Eqs. (8.7) and (8.8) are expressed in the homogeneous

coordinates xn_.,. = (x/., x_>, x/:j, I )r and

X h =(X _,X 2,X 3,1)r to facilitatc the use of Eq. (8.4).

In the object space, the unit tangent vector is T = X. the

unit principal normal vector is N = .i(/_c,,_,i, and the unit

binormal vector is B = T × N = ._"x ._" / h",,p,j. We define

the distance Dij from a point X_ to the osculating plane to

the curve at another point Xj

D,j =(Xj -X i ).By =i(Xj -X i ) m i Xl II#¢,,&i

=lXh.j "_h.j Xt,.j Xh,_ lllc,,_,i i

(8.9)

where the subscripts 'i' and 'j' denote the quantities

associated with the points X_ and Xj. The geometrical

meaning of Dii is illustrated in Fig. 8. Similarly, in the

composite image space, the distance dij from a point

to the osculating plane to the curve at the point
X corn, i

X com. j

dii =l( x n.... j - xn..... i) Jcn..... j J?h..... jl/t¢,,,i (8. I0)

= I Xhcom,j JChcom, j J(ho,m,j Xhcom,i I / lC_,,,

In addition, we introduce the following geometric

quantities

i(1,1',2.3)=lxn ..... t iCh...... I Xh,'om,2 Xh..... i I,

i(1,2,2',3)=1X h..... t Xh..... 2 "ieh..... 2 Xh .... ._1.

1(1,1',2.3)=1Xh. t Xn. x xn.2 Xh,._l,

l(l, 2,2',3)=lXn, t Xh,2 Xh.2 Xh. 3 I" (8.11)

Differentiating Eq. (8.4) with respect to S, we obtain

• :-,e t "_,x h..... ,=s ,.......(X_.i -_,,i _,

v-')

' =._.-'e_,,,,,,(x., x,,, 2_, )?,,, ,,+_:,-2:_:,
Xhc°m'i .... i,_, i +2i + 2_i2,

(8.12)

where gt_ = )_i - )_i "_:_-' • S2i== 22_ - 2, "q,';-_ , and

g.=ds(S)/dS. From Eqs. (8.6)-(8.12), we have the

tollowing determinantal relations

_.2,,,.,r,,,,., = 2_.7_ l P_<.,,,,I_,,,., r,,,,i., . (8.13)

_c,,,.j d o = ,'7.i 2+ik -+ I P_........I_'<,_,j,s Dis, (8.14)

i( l,l,,2,3)= 2_ 222+k--' lpa.,,,, ll( l.l' 2,3), (8.15)

i( 1,2.2',3 ) = ;t5 )v '_._';'-'_ I P_<o,,,I1( 1,2,2',3 ). (8.16)

The subscripts 'i' and 'j' denote the quantities associated

with the points X, and Xj in the object space and the

corresponding points x<o,.._ and x ..... s in the composite

image space. Re-arrangement of Eqs. (8,13)-(8.16) to

eliminate 3.,, A., k, and I P_,,,,,,,I yields several semi-

differential perspective invariants.
(I) An invariant related to the torsions and the

distances Dis and d,s is

ri,,,._ dg__._______:= r,,_,i._ D_, (8.17)

r,,,,,2d_, r,,,,,.2O"_,,

For r,_,s._ = O, r,,_i.2 * 0, Ds2 * 0, and D:_ :/: 0, then

r_,,,._=0. The zero-torsion point in the object space

corresponds to the zero-torsion point in the composite

image space. The condition I)_2 *0, and D2_ veO

13



impliesthatthepointsX t and X: are not on the same

osculating plane.
(II) An invariant related to the curvatures, the

distances D,j and d,j, and the quantities i(1,1'.2,3 ),

i(1,2,2",3 ). I( I, 1',2,3 ) and I(1,2,2',3)is

/¢_,,,2 dl2 i2(1,1',2,3)_ /t-,,i,j2 DI2 12(1,1',2,3)
(8.18)

h'i,,,2 d21 i'-(1.2.2'.3) l¢,,_,_lD21 1:(1,2,2',3)"

For tc,_,i: =0. rc_v z:_0, D_: ¢0. and D2z _0. then

_',,,.2 = 0. This means that the zero-curvature point in the

object space corresponds to the zero-curvature point in the
composite image space.

(III) An invariant related to the distances Dij and d#
is

dzl du_ D2I D4_
- (8.19)

d41 d2, D41 D2¢

This result is analogous to the cross-ratio of the distances

on a line, a classical perspective invariant in perspective
geometry [2. 241.

9. Modeling o¢ Imaging System

Modeling of an imaging system is necessary for
radiomelric measurements. Figure 9 shows a radiation

source at an infinitesimal area element dA on the optical

axis. having a distance R_ from the optical center of the

imaging system like a CCD camera 125]. The radiant

energy (units: joule) from the area element integrated over
a solid angle seen from dA_ to a lens is

dA, dt _ L( 8,(_ )cosOdm. (9. I)dQ

where L(0,O) is the radiance (units: watt-m 2-sr -_) of the

radiative source at dA. dw= sinOdOd o is the

infinitesimal element of solid angle. _ is the polar angle

(measured from the surtace normal), O is the azimuthal

angle (measured between an arbitrary axis on the surface

and the element of solid angle on the surface), and dt is a

time interval. The number of photons collected by the lens
is

dnl.,, =(by )-IT,,,,, dQ

=(hv)-_dA dtT,,,, f L(O,O)cosOdm" (9.2)

where hv is the energy of a single photon and T,m is the

transmittance of atmosphere air. Define OA as the angle

between the optical axis and the line connecting dA and

the edge of the aperture. When t_a is small,

(sinO_)2= A,,/Rf is approximately the solid angle in

which the radiative energy from dA, is collected by the

imaging system, where Ao is the imaging system aperture

entrance area. Thus, Eq. (9.2) becomes

dnl_.., = LI, dA, dtT,,,, ( A. / R_ ). (9.3)

where Lt, is the average photon radiance over the

collecting solid angle A. / R_ ---(sin _a )2

Lp =(hv)-I(sinO_ )-2_ L(O,(b)cosOdo). (9.4)

Consequently, the number of photons reaching the image
plane is

dn_,, = L,, dA dt ( A,/ Rf )T ,,,,T ,,, (9.5)

where T,_,, is the transmittance of the optical system. The

number of photons incident the detector element is simply
proportional to a ratio between the detector element area

A o and the image area dA_ corresponding to dA

dn _,, = dllim A D/dA t . (9.6)

Under the approximation of small angle 0_ << 1, dA_ is

related to dA by

dA /Rf =dA,/R_. (9.7)

where R, is the distance of the image plane from the

optical center. Substituting Eqs. (9.5) and (9.7) to Eq.

(9.6) and using the relations A,, =rcl) 2/4 and

l/R, + I/R_ = l/ fl. we have

dn,m lr Lp AIj dr T,,,,,T,p,= ' (9.8)
4 F2(I+M,,I,, 12 "

where F=fl/D is the F-number and M,I, ,=R 2/Rj is

the optical magnification, D is the diameter of the

aperture, and fl is the total length. Thus, the total

number of photons collected over an integration time ttx r
is

zC L I, Aj>tmr T,,,,,,T,p,
n,#, = (9. ! 0 )

4 F2(I+M,,I,, ):

Since some of the variables in Eq. (9.10) depend on the

frequency v of light, the number of photoelectrons

generated in the solid-state detector over a frequency band
[V,,V2 l is

_,ii: _ L"(v)At'ttNrT'"(v)T"t"(V) dvhi,` = R,_(v)-_ F2(I+MI,, )2 '

(9.1 I)

where R,,(v) is the detector's quantum efficiency (units:

electrons/phonon). We separate the photon radiance L
P

into the radiance magnitude Lf, independent of V and a

shape function of the frequency spectrum fv, ( v ), i.e.,
I

Lp = Lr, f,p( v ). (9.12)

Therefore, Eq. (9. I 1) becomes
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n,,, = p,,,,, L I, , (9.13)

where p,. ..... is a parameter describing the camera

performance

_,ii: rc f'P(v )Ant"vr T"'(v )T"(V ) dv.p,,,,, = R_(v )-_ F2( I + M,,,, )2

(9.14)

After the camera is radiometrcally calibrated, the

image intensity (gray level) is proportional to n,_. i.e..

I( x ) = ct, , rip,,. (9.15)

The proportional constant oh,, is determined by

calibration. The above analysis is made based on the

assumption that the radiation source is on the optical line.

In general, we have to lake the off axis effect into account
[26-27]. Hence. a generalized form of Eq. (9.15) is

If x ) = cl,,, p,,,,, Lp cos 4 0/,, (9.16)

where 0/, is the ang[e between the optical axis and light

ray through the optical center. When the lens distortion is

negligible, the angle 0, can be expressed as a function of

the image coordinates x, the principal point location Xp

and the principal distance c, i.e.,

Of = arctan(I x - x p I / c ). (9.17)

Grouping the terms in Eq. (9.16) that are only dependent

of the image coordinates to the left-hand side, we get

i(x)O,(ix_xpl)=cl,,,p,,,,L,(X), (9.18)

where the function describing the off-axis effect can be

approximated by
I:

O,(tx_xpl)=cos-UO, =l+21x-x v /c 2. (9.19)

Assuming that the off-axis effect is corrected on the image

plane, without loss of generality, we simply rewrite Eq.
(9.18) as

I( x ) = cl,,, p ......LI,( X ). (9.20)

In order to simplify the notations, we use replacements

c ......--> c_,,, p, ..... and L( X ) ---) L,(X ). Therefore.

without loss of generality. Eq. (9.20) becomes
l( x )=c,,, L( X ), (9.21)

where c,,, is a proportional constant related to the imaging

system and L( X ) should be understood as the spectrally

averaged radiance.

10. Typical Radiation Processes

Surface Reflection
Quantitative image-based measurements require the

knowledge of the physical properties of radiation-matter
interaction of the objects of interest. One of the important
interactions is reflection on a surface. As shown in Fig.

10, the incident radiance is generally a function of the

incident direction ( 0_.0, ), i.e..

L i = L+( 0 i ,0i ). ( I0. I )

The reflection radiance L, (0_,0_:0, ,0, ) is quantitatively

characterized by the bidirectional reflectance distribution

function (BRDF) [28]

f,.(O_,¢,;O,,cP, )=dL,.(O_.c),.'O,.,(_, )/dEj(O,.O_ ). (10.2)

where the infinitesimal incident irradiance dE,(O,,O_ )

over a solid angle element dw, is

dEi( Oi ,_i ) = L,( O, .d?i )cosO, d_oi. (10.3)

The BRDF has a unit of steradian n. The BRDF depends

on the surface roughness distribution. Foe a perfectly

diffuse surface or a Lambertian surface where the

reflection radiance is isotropic, i.e.. L,. = cmtst., the BRDF

is f, = l/x. In this case. the reflection radiance is

I / r: )r L_( O,.0, )cosO, dto, . (I 0.4)L, (

(0 t

Furthermore, when the incident source of the irradiance

E,, is collimated at a fixed incident direction (0,,.G). the

incident radiance is described by the Dirac-delta function

L,( O+,O, )= E, _( 0, -0,, )8(0,-¢,, )/ sinO,,. (10.5)

Thus, Eq. (10.4) becomes the Lambert's cosine law

L,. = ( 1 / lr ) E, cos 0,. (10.6)

For a general surface, the BRDF can be derived based
on either the wave equation for electromagnetic waves or

geometrical optics. Using the method of Helmholtz-
Kirchhoff integral. Beckmann and Spizzichino [29] have

derived an expression for the mean power of

electromagnetic wave scattered from a rough surface.
Similar integral approaches were used by Icart & Arques

[301 and Wang I31]. Icart and Arques [301 derived an
expression of the BRDF lbr multilayer materials, which

was composed of specular, directional-diffuse (spread
reflection), and uniform diffuse (Lambertian) components.
From a viewpoint of geometrical optics. Torrance and

Sparrow [32] gave a simpler expression for the BRDF.
Beckmann-Spizzichino's model and Torrance-Sparrow's
model were discussed by Nayar et al. 1331 from a

viewpoint of computer vision application. A
bibliographical review on the BRDF was given by Asmail
[341. Scattering of electromagnetic waves from randomly

rough surfaces is still an active research area covering a
variety of theoretical and experimental studies [35].

From a viewpoint of application, the empirical

expressions for the scattered radiance from a rough surface

arc very useful due to their simplicity 136]. An empirical
model for a single light source is

L,( X )= p,, E,( X )+ P,I Ez,( X )( Nr L, ) (10.7)

+p, EI,(X )p(RrV )

where the first, second and third terms are, respectively.
the contributions from the ambient reflection, diffuse

retlection, and specular reflection. In Eq. (10.7), p,,, Pd'
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andp,, are the empirical reflection coefficients fi_r the

ambient rellection, diffuse reflection, and specular

reflection. As shown in Fig. 11, the vectors N, L_, R,

and V are, respectively, the unit normal vector of a

surlhce, the unit vector directing the light source from the

surlhce, the unit main directional vector of the specular

reflection, and the unit viewing vector. E(X) and

E_,( X ) are the irradiances fi)r the ambient environment

and light sources, respectively. The function p(RrV ) is

the directional distribution of the specular rellection,

describing the spreading of scattered light. Phong [371

gave a power function p(RrV ) = (RrV)". In general,

the main directional vector of the specular rcflection, R, is

a function of the incident direction of light -L_. Although

there are theories for predicting R [32], it is not known for

a general surlace. The unknowns in Eq. (10.7), including
R, the reflection coefficients and the parameters in

p(RrV)+ have to be determined by calibration. For

multiple light sources, Eq. (10.7) includes superposition ot"
the contributions from these light sources.

Radiative Energy Transfer in Media
When light travels in a medium, the radiance is

affected by absorption, emission and scattering. The

radiative energy obeys overall conservation of energy.
The equation of radiative energy transfer can be derived
based on a balance among absorption, emission and
scattering, i.e.,

dL,_
= s .VL,I = S,I - fl,lLo + a_'l f L,_( ._i )O,_(si .s )da_,

4_r d
4a"

(10.8)

where s is the path vector, ft, is the extinction

coefficient, o'+,1 is the scattering coefficient, _,_(si,s ) is

the scattering phase function, S,z is a radiation source

term, and the subscript r/ denotes the frequency range.

This transport equation has been used in radiative heat

transfer [38] and radiative hydrodynamics [39]. Note that

the terminology of the radiatve intensity (unit:
watts/area/solid angle) used in literature of radiative heal

transfer is just the radiance in radiometry. The solution
techniques and the suitable boundary conditions have been
discussed by Modest [38],
Lumhtescence

Luminescence is an emission from molecules after

they are excited by an excitation light with a suitable

wavelength. Luminescent dyes, widely used as probe
molecules in biological and medical applications [40],
have been utilized for flow visualization and

measurements. For example, based on oxygen quenching
of luminescence, luminescent molecules immobilized in a

polymer layer have been used for surface pressure and
temperature measurements in aerodynamic testing. These

new sensors are called as pressure- and temperature-
sensitivc paints (TSP and PSP). After luminescent

molecules in PSP absorb the energy from the excitation

light with a wavelength 2,_, they emit luminescence with a

longer wavelength 22 due to the Stokes shift. Liu et al.

[41] have analyzed luminescent radiation from a PSP layer

and obtained the spectral luminescent radiance ( L_: )

L =h_(P, T)q,, Es_:()_, )K_(fl,/p)M(/.t), (10.9)

where _(P. T) is the luminescent quantum yield that

depends on pressure (P) and temperature (T), Es+: (2,) is

the luminescent emission spectrum, h is the layer

thickness, q0 is the incident light flux, u =cosO is the

cosine of the polar angle 0, and the extinction coefficient

,8_ = czc is a product of the molar absorptivity _',_/ and

luminescent molecule concentration c. The coefficient

M represents the effects of reflection and scattering of the

luminescent light at the wall. The term K_ represents the

combined effect of the optical filter, excitation light

scattering, and direction of the incident excitation light.

The luminescent irradiancc E over a collecting solid

angle ,Q is

E, = f L_, cos 0 dD
,I (10.10)

=fl_ h_(P. T)qo Es (2,_) Kj<M >_2

where < M > is the spectrally averaged quantity of M.

Even though Liu's analysis was focused on a thin PSP

layer, calculation of luminescent radiance is generally
valid for a luminescent volume where surface reflection is

absent. Thc spectral luminescent radiance integrated over
a volume V is expressed as

L_: = Es_:(2,_ )K I/_-i_[ _( X )q,,( X ) fl,_( X )dX .
V

(10.10)

A similar analysis for the luminescent flux was given by
Gaigalas et al. 142].

11. Reflection and Shape Recovery

Reflection on a solid surface depends on the geometric
properties of the surface. In principle, shape of the surface
can be recovered from surface reflectance under certain

conditions. Computer vision scientists have studied the so-

called shape-from-shading problem for decades [43-44].

Here we give a general consideration that is particularly
useful for more complex engineering structures. Figure I I
shows a surlace element with the unit normal vector N.

The incident polar angle 0 i is the angle between the unit

normal vector N and the unit vector L+ directing the

light source from the surface. The reflecting polar angle
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0, is the angle between the unit normal vector N and the

unit reflecting vector R. The azimuthal angle Or is the

angle between the prqiections of the vectors L_ and R on

the surface. Assuming that the reflecting vector R is on

the plane spanned by L s and N, we have

R = aNN +atL s. (I l.I)

The coefficients a N and at. are determined by solving the

tbllowing equations

COSO r : N .R=a x +aLN ,L,.,

R°R=a_ +2axatN°L_ +a_ =l. (11.2)

Eliminating a u from Eq. (I 1.2) yields

(1+cos z 0 i )a_ -2cos: 0 i a L +cos: 0, - I=0. (11.3)

There are two solutions for at.

cos: O, + 4(1 + cos: 0 i )(cos: 0 i - cos: Or ) + 1
aL-

1 + cos: 0 i

(11.4)

The reflecting polar angle 0, is not necessarily equal to

the incident angle 0_ especially at large incident angles

due to the off-specular reflection phenomenon on a rough

surface [321. In general, 0 r ->0, insures that therc is no

imaginary solution tbr at, which is also supported by

experiment data. The condition Or ->0_ indicates at, -<0.

Thus, the appropriate solution tot a N and at. are

cos" 0 i -4(l+cos: Oi )(cos: 0 i -cos: O_ )+ 1

aL = ] + cos: 0 i

a N = cosO, -a L cosO i • (I 1.5)

The reflecting polar angle 0, can be expressed as a

function of 0_ based on theories and experimental results.

In a special, but very useful case 0, =0 i, Eq. (11.5)

becomes

cos-" 0 i - 1
OL=

1 + cos: O_

2cos 0 i
O N

1+ cos 20,

(N°L,):-I

I+(N.L_): '

2N • L_ (I 1.6)
I +( N . L_ ):

Consider a surface X _ = F( X _. X _-) illuminated by a

single light source. The relation between the image
intensity and reflection radiance from the surface is

l( x )=c,,,p,, E ,( X ) (I 1.7)

+c _ E1_( X )[ pj N °L_ + p, p( R°V )]"

The relation between the image coordinates x and the

object-space coordinates X is given by the collinearity
equations Eq. (2.2). The unit normal vector N is

N=(Fx,,Fx:,-I) r I_]F_:_ +rx: +1. (11.8)

where F,. =OF/OX _ and Fx: =OF/OX: The unit

vector L_ directing the light source X_ from the surface

is

L, =( X_-X )/IX, -X I. (11.9)

When the camera is sufficiently away from the object, the

unit viewing vector V directing from surface to the

camera is approximately

V =-m_, (11.10)

which is known for a photogrammetrically calibrated

camera. The reflecting vector R is given by Eqs. (11.1),

(11.5) and (11.6). Clearly, given an image intensity field

I(x), Eq. (11.7)is a complicated non-linear first-order

partial differential equation for the surface

X_=F(X_,X:). Thus. a numerical solution to Eq.

(11.7) has to be sought with suitable boundary conditions
and constraints.

When the light source is away enough from the object
relative to the size of the object, the incident irradiance

EI,(X) and ambient irradiance E,(X) can be

considered to be homogenous on the surface of the object,

that is, E_( X ) = const, and E,( X ) = const.. In this

case, the vector L, is also approximately homogenous and

it becomes a constant vector. Thus, Eq. (11.7) is

simplified to

l( x )=c,,,p,, E, .(11.1 I)

+c,, El, l p a N °L_ + p, p( aNN °V +aLL, oV )]

Eq. (11. I I ) is still complicated for analysis. Furthermore,
at a Lambertian surface without the ambient illumination,

Eq. (I 1.11) is simply
I( x )=c,,_Ei, p,i N • L_. (11.12)

In computer vision, a viewer-oriented coordinate system
and orthographic projection are often used to further

simplify the problem [451. The viewer-oriented

coordinates ( X _, X : ) in the obiect space are aligned with

the image coordinates (xt,x: ). The third viewer-oriented

coordinate X _ is in the direction of the viewing vector V.

Eq. (11.12), known as the image irradiance equation in

computer vision, has been extensively studied for shape-
from-shading [43-44]. For quantitative measurements, Eq.
(I 1.12) can serve as the first-order approximation.

12. Motion Equations of Inmge Intensity
In this Section, we derive motion equations of image

intensity from underlying physical principles. The motion

equations of image intensity can be used for recovering the

optic flow and other physical properties from a time
sequence of images of continuous patterns. The temporal
and spatial development of the image intensity depends on
the radiation process that is characterized by the physical
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parametersP=(P/,P_,,'".P:¢)r and the geometric

parameters q = (ql,q:....,qr_)r that is.

lf x,t )=c ,, L( X,p,q,t ). (12.1)

Differentiating Eq. (12.1) with lime, we have the motion

equation of image intensity

--+u.V I=c,, +U.V_.L+dP.v L+dqovjL
_t -_t ' dt t' dt

(12.2)

where u = dx/dt is the optical flow in the image plane,

U = dX/dt is the motion field in the object spacc, and the
gradient operators arc defined as

V =(_lO.rl,Ol_x,_ )r

V x =( 313X 1,3/3X :,3/3X" F,

Vp=(313pl ...,313p._ . )r

V 1=(3/3q I,...,3/3qx )7.

The lirst term in the right-hand side of Eq. (12.2) is the
local temporal change of the radiance. The second term is

the change induced by motion in a non-homogenous
radiance field. The third and fourth terms arc related to the

changes of the physical and geometric parameters,
respectively. Eq. (12.2) is a generic lbrm of the motion
equation of image intensity. However, the detailed

structure of Eq. (12.2) depends on the specific physical
process being studied. To determine the optical flow,
Horn and Schunck [46] suggested the well-known

brightness constraint equation 31/3t+u.V 1=0 in

computer vision. In fact. the brightness constraint

equation is just an assumption that the inrage intensity

remains invariant along a stream of images. Generally
speaking, this assumption, which is not related to any
physical process, does not hold exactly. In the following,

we give the motion equations of image intensity for three
typical cases. Similar results can be obtained for other

physical processes. Determining the optic flow in the

motion equation of image intensity is a constrained
variational problem.
Moving Lambertian Su_ace

Consider a moving Lambertian surface illuminated by

an incident irradiance field E_,(X ). Since the image

intensity is l(x ) = c,., E_,pj N • L, the motion equation

of image intensity lbr a Lambertian surface is
31
--+u °V /
3t

( )dN L,
=c,, P,I (NoL_)(U°VxE/,)+El, ( dt )

(12.3)
The lirst term in the right-hand side of Eq. (12.3) is the

change due to motion in the non-homogenous irradiance

field. The term (dN/dt). L, represents the rate of change

of the unit normal vector N of the surface projected in the

illumination directional vector L_ =(L,t, L,, L, )r. We

explore the connection of this term with the fundamental

geometric quantities of the surface. The term (dN/dt) *L,

is expanded as

dN 3N

d--_-.L_. =-_-t °L, +U°(L,. °VxU ). (12.4)

The surface is described by a parametric equation

x =x(_',_:), (12.5)

where _ and _-" are the parameters of the surface. The

term L, .VxN can be expressed in _1 and ,_2

3_/3 3N

L_.VxN=L,,_ 3X_, 0_/_ .(fl=L2. t_= 1.2,3) (12.6)

According to the formulae of Weingarten [ 18]
3N o3X

3_/_ =-g"bp. _" , (12.7)

we obtain

3X

U'(L,'VxN)=-I_ga_ba_,-_.U, (12.8)

where 1_ = L_3_ g /3X _, g_ are the contravariant

metric tensor, and b q,_ arc the coefficients of the second

fundamental form of the surface.

Emitting Passive Scalar Transport

In a transport process of passive scalar such as

fluorescent dye, scattering particles, and temperature in
fluids, the radiance is assumed to be proportional to the

density or concentration _( X.t ) olthe scalar

L(X,t) = G. _( X,t ), (12.9)

where c,_ is a proportional constant. The density of the

scalar _( X,t ) obeys the transport equation

d__ 3_ +U °V_ = D_V2_ q/. (12.10)
dt 3t

where Dr, is the diffusion coefficient of the scalar.

Differentiating Eq. (12.1) and using Eqs. (12.9) and
(12.10), we have

dl( x.t )
dt -c"'cv'Dv'V_'_" (12.11)

Furthermore, because of l(x.t)=c,,.,G,_(X,t), Eq.

( 12. I I ) becomes

dl( x,t )
= D_V]. l(x.t). (12.12)

dt

The Laplace operator V_ can bc expressed in the imagc

coordinates x, i.e.,

V x=h_. 3 +h_,_ 32
3x'-'-7 3x,,3x r (12.13)
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where h_ and h_,, (a=l,2,y=l,2,fl=l,2,3) are

defined as

3-_x r 3x r ax"
and h_ = (12.14)

hr = 3X l_3X a 3X _ 3X l_

For a photogrammetrically calibrated camera, hr and /b, ,

are determined by the collinearity equations with the

known camera parameters and the image coordinates when

a surface constraint X _ = F(X ;,X 2 ) is imposed (see

Section 4). Hence, the motion equation of image intensity

for a passive scalar transport process is

01 31 (h31+ _)21 I
-- + u,_ -- = D_, hm . ( 12.15 )
at ax '_ Y3x y 3x _3xy

The optical flow field u a =dx"/dt can be recovered

from Eq. (12.15). In particular, using the orthographic

pr(_iection x _' = X", we have

h r =0 and h_ =6 m. (12.16)

In this case, Eq. (12.15) is reduced to the standard

diffusion equation [47]

a; al _o( 3_t )
____t+ u,_ _ ). (12.17)

Transmittant Passive Scalar Transport

Here we derive the motion equation of image intensity

for transmittant passive scalar transport in a medium like
fluids. When a light ray transmits through a bulk of

passive scalar, the intensity of light is attenuated duc to
absorption and scattering, shown in Fig. 12. The radiance

reaching a camera through the scalar medium is given by

dL s.VL ilL, (19 18)
ds

where s is the path vector and fl is the extinction

coefficient. The solution of Eq. (12.18) gives the

transmitted radiance

L = L, exp( - _I: fl ds ). (12.19)

Consider a bulk of the participating passive scalar confined

by two virtual boundary surfaces F; and F:, as shown in

Fig. 12. We assume that the camera is far enough away
from the bulk of scalar such that the light path is almost

parallel to the optical axis, i.e., s = -m 3 . In this case, it is

convenient to use the object space coordinates X in the

frame ( m I , m 2 , m3 ), defined as
--/

X =m_ .(X-X,. )
--2

X =m 2.(X-X_), (12.20)
--3

X =m 3.(X-X_)

where the unit vectors m_, m 2 , and m 3 are orthogonal,

i.e.. m_,_my,_ =_r/J" Under the above conditions, the

transmitted radiance in Eq. (12.19) can be written as

L(-X,t)=L, exp - fl(X,t)dX , (12.21)

--3 --I --2

where the boundary surfaces are X = I-;(X ,X ,t) and

--? --I --2

X = F,(X ,X ,t). The extinction coefficient is

proportional to the concentration qJ(X,t) of the scalar,

i.e.,

fl( X,t ) =E_, q/( X,t ), (12.22)

where e_, is an absorption coefficient. The relationship

between the image intensity and radiance is

I( x,t )=c,,:, L( X,t ), (12.23)

where x = ( x ;,x" )r is the image coordinates.

Combination of Eqs. ( 12.21 ), (12.22) and (12.23) yields a
basic relation between the image intensity and the

concentration of the scalar

l(x,t)=c,,.,L, exp -e_ g(X,t)dX . (12.24)
G

Differentiating Eq. (12.24) with respect to time. we
have

dl( x ,t ) _ gv_I( x ,, ) " d_ d-_. _ + iptr ' - qll,)
dt _ ar; dt dt

(12.25)

Since q/(X,t) obeys the transport equation Eq. (12.10),

the first term in the right-hand side is

( ot = 1,2,3 ) (12.26)

The second equality in Eq. (12.26) can be easily proven.

From Eq. (12.20), we know the differential relation

3 / OX '_ = m _, O/ 3--X15and then

(12.27)

Integration by parts yields

dX = _)'NdX +B.T.

( fl = l,2 , c_ =1,2,3 _ (12.28)

where the boundary terms B.T. are
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B.T.= 9 O_ OC

a-_ B _, a--£_

+ a___, aC OC

--- 2 Oq/ OF_

I aC or,

_'.r,Iay_%_ _ - a_a_ B ax ,.. a_",_,
+

We consider that a bulk of the passive scalar is confined in

a finite domain and the distribution of V(X.t) rapidly

decrease to zero outside the domain. This represents a
typical case in many practical applications. Therefore,

when the virtual boundary surfaces Fj and F, are large

enough such that gt and its derivatives at the surfaces

approach to zero. i.e.,

_,, .(12.29)
G r:

Since the boundary terms in Eqs. (12.25) and (12.28)
vanish, Eq. (12.25) becomes

O: J'f" --.;dl( x,t )_ e_, D_, I( x,t )o_._/_O._/_ )dt _ dX

(fl= 1,2 ) (12.30)

Now we consider the transformation between the

image coordinates x=(x_,x 2 )r and the object space
-- --/ --2 --3

coordinates X =( X ,X ,X )T. The collinearity

equations without the lens distortion are

x_-xS=-cX /X. (fl=l,2) (12.31)

Thus, from Eq. (12.30), the Laplace operator can be
written as

O_' 0:
=2: (fl=l,2) (12.32)

a_.-_O__' Ox%x _ '
--3

where 2=-c/X is the scaling factor. Using Eqs.

(12.24), (12.30) and (12.32), we obtain the motion

equation of image intensity for transmittance images of
passive scalar transport

Ol i)l (021 OI _I )-- + ul__ = D_, 2 2 1-1
Ot c)x c)x_Ox/_ Ox pax ,_ "

( fl = 1,2 ) (12.33)

Note thai a simple version of the motion equation of image

intensity for transmittance flow images was given by
Wilders et al. [48] based on the orthographic projection
and other assumptions.

13. Conclusions

We study a number of theoretical problems in
quantitative image-based measurements of geometric,

kinematic and dynamic properties of observed objects

(specifically detormable bodies). From a unified
viewpoint, we discuss different tbrmulations of the

perspective projection transformation and their geometrical
connection. These equivalent formulations of the

perspective projection transformation are selectively used
in this paper to study different geometric problems,

depending on convenience of the tbrmulation applied to a
specific problem. The perspective developable conical
surface containing a 3D curve is reconstructed from known

image measurements of the curve. The developable
conical surfaces can be used to reconstruct a 3D curve and

a surface without solving the ambiguous correspondence
problem in stereovision. Furthermore, the general

methodology is proposed for reconstructing the motion
field of a 3D curve from a time sequence of images.

The perspective projection transformation under a

surface constraint allows one-to-one mapping between the

surface in the object space and the image plane. We
explore the connection of the geometric structures and

motion fields between the image plane and the surface in
the object space. These issues are important in
reconstructing the complex motion fields on a surface such

as skin friction field on an aerodynamic body and passive
scalar motion field illuminated by a laser sheet. Then, we

consider the general point correspondence problem in

multiple images. Longuet-Higgins relation for the point
correspondence problem is generalized by taking the lens
distortion effect into account. Generally, establishing the

point correspondence requires at least four cameras or

images. The concept of the composite image space is
introduced. After the relationship between the composite
image space and the object space is established under the
coplanar condition, the perspective invariants of a 3D
curve are constructed. These invariants allow us to

directly know the geometric features of the curve such as

torsion and curvature from images without calibrating the
cameras.

In the radiometric aspects, we discuss the relationship

between the image intensity and the radiance received by a
camera as well as typical radiation processes such as

surface reflection, radiative energy transport through the
participating mediums and luminescence. The motion

equations of image intensity are derived for moving
Lambertian surface, emitting passive scalar transport and
transmittant passive scalar transport. These equations

provide a rational foundation for recovering the optic
flows and motion fields of detbrmable bodies (e.g. fluids)

from a time sequence of images of continuous patterns.
Future research will be focused on the development of the

effective numerical techniques and algorithms and their
implementation in various simulations and experiments.
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